Skip to content

NPU Compiler Installation*

1. Environment Setup*

  • Python Environment

    Supports Linux with Python 2.7, Python 3.6, Python 3.7.

    Note: If users need to compile and convert PyTorch models, the NPU compiler version must be at least 1.6.0b0 or above, and Python 3.7 must be used.

  • Frontend Deep Learning Framework Version Requirements

    • TensorFlow 1.4 - 1.15
    • PyTorch 1.10 - 1.13

2. Install the gxnpuc toolchain*

$ pip install npu_compiler

3. Update gxnpuc toolchain*

$ pip install --upgrade npu_compiler

4. Check the toolchain version*

After the installation or update is complete, you can use the following command to view the version number of the current toolchain.

$ gxnpuc --version

important

If the following error appears when running gxnpuc --version, please refer to the following two methods to solve it:

$ gxnpuc --version
bash: gxnpuc: command not found

  • Method 1: Confirm whether the gxnpuc file is in ~/.local/ bin, if yes, add ~/.local/bin to PATH In the directory, add method: add the following statement in ~/.bashrc
    export PATH=~/.local/bin:$PATH
    
  • Method 2: Check the path of gxnpuc through import npu_complier:
    $ python
    Python 3.6.5 |Anaconda, Inc.| (default, Apr 29 2018, 16:14:56)
    [GCC 7.2.0] on linux
    Type "help", "copyright", "credits" or "license" for more information.
    >>> import npu_compiler as nc
    >>> help(nc)
    
    The output is as follows:
    Help on package npu_compiler:
    
    name
        npu_compiler - #coding: utf-8
    
    PACKAGE CONTENTS
        __main__
        v100 (package)
        v150 (package)
        v160 (package)
    
    DATA
        VERSION = '1.5.6'
    
    FILE
        /home/jindg/anaconda3/lib/python3.6/site-packages/npu_compiler/__init__.py
    
    Finally, change /home/jindg/anaconda3/lib in the log above to /home/jindg/anaconda3/bin</ font>, and then add it to PATH in ~/.bashrc.

Attention

If the problem still cannot be solved, please contact NationalChip engineers.